网易云歌单播放次数怎么算
网易云是一款火爆的音乐APP,进入主界面,会给你推荐许多的歌单,每个歌单的右下角都显示有播放数量,那这个播放数量是怎么来计算的呢?
网易云歌单播放次数是在歌单里自己或者别人完整听完一整首歌才算做一次播放量,在这次进入歌单一直播放歌曲都是算作一首的,需要退出歌单重新进入歌单再次播放完整的一首歌再算作一次,并不是一直听就一直加的。
网易云是网易集团旗下云计算和大数据品牌。其主推“场景化云服务”,推出通信与视频(网易视频云)、全智能云客服(网易七鱼)、云计算基础服务、云安全等一系列场景化云服务和网易大数据产品。网易专属云是部署在网易公有云机房内的客户独占资源专区,用户可以使用与公有云相同的 IaaS、PaaS、CaaS(通讯即服务)服务。轻舟微服务是网易云打造的微服务解决方案。轻舟微服务整合主流开源技术,支持DevOps,配备单个集群可支持3万节点、45万容器的容器云平台,允许企业轻松构建、治理和管控。
网易云歌单播放次数算自己的吗
「网易云音乐」歌单推荐算法-由技术同学体验反推
因为考虑到非技术从业者,这篇文章会写的非常通俗,不出现任何难懂的名词和概念,更不会有任何涉及到线代、算法底层的东西。
下文不会出现任何具体算法实现细节,但推荐算法其实是可以通过APP的表现来反推,不会100%准确,但应该也八九不离十。
推荐依据
推荐算法不是无根之水,它必须借助用户的数据才可以进行推荐。即使是冷启动,也需要获得你的微博、微信(你的登录方式)或其他已注册用户的热门喜好。具体的数据包括
浏览记录
页面停留时间
歌曲播放次数
点击歌曲但未播放记录
点击歌曲且播放完成记录
歌曲、歌单、歌手的收藏记录
歌单播放次数和歌曲所属标签
个人属性(性别,年龄,地理位置等)
……
这样的数据在算法模型里叫做特征,也就是通过这些历史行为数据中的特征,推荐算法可以进行非常精准的个性化推荐。在几年前,网易云音乐其实还没有那么“神”,很多推荐莫名其妙,但是现在的算法相对来说已经非常精准了。
推荐算法
在说歌单的同时,也会给大家看看网易云音乐这个APP里一共有哪些地方用到了推荐算法:
场景一:开屏广告(按用户画像推荐/全量发布)
算法:有时候打开的广告会不一样,有时候会重复。全屏广告费用很高,假如不是独占类型的,那这块用到的可能有一些简单的人群匹配或者用户画像。如果是单次广告独占,则有可能是按照广告商的要求投放。18年之前没有这个广告功能,但是网易要恰饭的,能理解。
场景二:私人FM(实时推荐)
私人FM和电音位于个人主页的头部位置,用户点击率非常高。因为二者本质上很相似,这里只谈FM的算法。
私人FM和单曲、歌单推荐的最大区别是,歌单推荐是一次性生成一个歌曲/歌单列表,但FM只推荐下一首,没有“上一首”功能,这意味着推荐算法会更关注你的瞬时兴趣。因为FM只有喜欢、听完、切歌三种反馈,相对来说比歌单推荐要简单很多,但相对的,信息也少了很多。
可以推算,FM用到的具体方式是由“播放、喜欢、切歌”来判断用户对推荐结果的喜好程度。使用的算法应该是相似性召回和基于用户、基于内容的协同过滤三合一,这一点和单曲推荐很相似,甚至两个功能都使用了用一套推荐算法。
FM有个额外的要求是实时推荐,可以将私人FM理解为一个由动态变化的推荐歌曲组成的歌曲序列,这里面应该使用了深度学习算法中的“下一项推荐”模型来生成,用到的可能有Transformer或GRU/RNN模型。
实时推荐的意思是,上一首是“lemon”,如果你听完了,那么下一首可能会给你推荐米津玄师的另一首歌,或者相似的日文歌。如果我在听小英雄的OP,但没听完就切歌了,那么序列中的下一首本来是冰海战纪的ED,此刻可能就会变为一首英文流行歌。
场景三:主页推荐(这块包含的比较多,最主要的是“推荐歌单”功能)
算法反推:页面可以拆开来看
每日推荐(多因素加权)
这里用到的是单曲推荐,具体算法不难想到,从我的每日推荐歌曲来看,基本是
我听过的歌手的其他单曲
我听过的歌曲所属分类的其他热门歌曲
我听过、收藏过、评论过的歌曲
听过我听过歌曲的人,听过的其他热门歌曲
每个部分都分配有不同权重,权重高的,推荐的位置(排序机制)就会靠前,权重低的则会靠后。比如我的列表里,蓝莲花排名第一,但是我最近并没有听过蓝莲花,也没听过许巍的歌。但是我听过民谣/摇滚标签类的歌曲,并且很容易猜到,听过这个标签的人,基本都会听蓝莲花(热门)。那么我的列表里,第1项和第4项的权重应该是更高的。
现在的算法几乎都是千人千面,所以每个用户都有自己的个性化匹配机制,也就是张三的权重和李四的权重是不同的,这也反映出一种个人喜好。而相对于FM,这里的推荐更关注用户的长期兴趣。由用户最近一个月、一个周的行为数据构成。
上面这4种只是主要推荐方式,在具体应用时,算法团队会有更多机制来筛选这些歌曲并在列表内排序,提高对新用户、不活跃用户的推荐精度,而这里用到的算法有协同过滤,基于内容召回以及相似性召回等。对算法具体原理感兴趣的可以自行搜索,这里不展开讲。
2. 歌单推荐(搜索召回排序)
点进“歌单”按钮,会跳到一个歌单广场,但是我平时不怎么用,这里和主页推荐歌单放在一起讲,因为两个模块的算法应该是一样的。
推荐歌单是网易云音乐的主要流量通道,95%以上的用户每天打开APP会首先看这些推荐歌单。推荐歌单算法,网易云在全球范围内都属于做的很不错,因为歌单这个东西和歌曲不一样,里面有很多首歌组成,并且每首歌的调性有可能相似,也有可能不同,比传统推荐要更难。B站、Youtube都有类似算法,比如通过用户的收藏夹推荐相似的收藏夹。
歌单有个特点就是UGC(用户生成内容),UGC歌单是实时的,即用户有收听歌曲行为后可实时带来推荐变化,比如刷新一下,会推送不一样的歌单给你。
具体的推荐过程大概如下图,大家只需要知道“召回”和“排序”就行。
召回,是从数以百万计的曲库进行初步筛选,选出几百个相对符合用户口味的候选歌曲
排序,是把这几百个候选歌曲通过深度学习、因子分解机等算法进行精准的个性化排序
召回的三种主要方式我大概解释一下
协同过滤,基于用户的行为数据,如听过的歌曲或者个人标签找到相似用户或者相似内容
基于内容,内容标签化,构建完整的用户画像,然后根据内容相似度进行匹配
基于热门 ,和你相似品味的用户聚合成一个圈,圈里的人喜欢什么,就推给你什么
这一块涉及技术太多,感兴趣的同学也可以自行搜索。
3. 电台推荐(搜索召回排序)
电台推荐就是以前的FM频道,现在整合了很多栏目。基本的流程和推荐算法其实和上面的歌单推荐一样,只不过歌单变成了电台,推荐的依据也从歌单里的歌曲、评论、收藏、用户,变成了电台的听众、主播、标签等
场景四:云村推荐
云村广场(搜索召回排序)
网易云音乐以前总是被人说清高、不接地气、评论太文青。现在这个云村广场(为了回答这个问题,我第一次点进去看),就是云音乐开始接地气的证明。点进去,我以为自己打开了抖音 快手。
这里用到的短视频推荐算法应该和快手、抖音一样,使用短视频的属性、标签和用户的口味、标签做匹配,相似性高的或者比较热门的就进行推荐。具体流程也是先召回再排序,可使用的模型较多,这里不好猜。不过短视频时代,最吸引眼球的就是图里这种内容,比什么算法都好使。
2. 好友动态(时间倒序)
这里的动态推荐算法和朋友圈一样,但是比朋友圈简单,就是按你的关注的人的动态,以时间倒序(最新的排在最前面)进行排序。
场景五:视频推荐(根据历史行为精准推荐)
视频是云音乐后来推出的一大功能,应该也是按照短视频推荐的方法来进行精准推荐,不同点在于这些视频主题更加明确,比如第一个就是华晨宇的采访,直接推送给听过华晨宇歌曲、买过华晨宇专辑的用户即可。
问题分析
用云音乐这么久,有一些问题大家肯定也比较困惑,这里做个简单分析
问题1:马太效应
19年之前网易云的推荐算法存在一个明显的问题:什么热门推什么。比如下面这个歌单,在我的推荐歌单列表中出现过不下100次,我怀疑给每个听过英文歌的用户都推了这个歌单,在座的如果有人听过,麻烦评论区留个“1”,一起验证一下。
这样的问题在于,越是热门的歌单越容易得到曝光,曝光越多也就越热门,而新歌单就很难得到曝光。这个问题在很多APP上都存在,解决方法也比较成熟。可以看到,从2019年开始,云音乐的算法团队做了改进,把基于热门的召回降低了权重,所以现在这种现象在逐渐减少。(也不排除是我的听歌口味变了)
问题2:重复推荐
现在很多推荐算法存在一个致命问题,就是重复推荐。在云音乐里,当你听过一些歌曲,就使劲推送相似的歌曲,比如我有一次听了小鳄鱼,之后就使劲给我推儿歌,这很容易引起用户的反感。
这其实是推荐算法中著名的EE(Exploitation,Exploration)问题。EE问题中的Exploitation(开发)就是:对用户比较确定的兴趣,当然要尽可能迎合用户口味,而Exploration(探索)就是:光对着用户已知的兴趣使用,用户很快会腻,所以要不断探索用户新的兴趣才行。如何解决这个问题,我想云音乐一定使用了BANDIT一类的强化学习方法来优化,下面我举个例子帮助大家理解:
一个赌徒,要去摇*********,走进赌场一看,一排*********,外表一模一样,但是每个*********吐钱的概率可不一样,他不知道每个*********吐钱的概率分布是什么,那么每次该选择哪个*********可以做到最大化收益呢?最好的办法是去试一试,不是盲目地试,而是有策略地快速试一试,这些策略就是Bandit算法。假设我们已经通过一些数据,得到了当前每个*********的吐钱的概率,如果想要获得最大的收益,我们会一直摇哪个吐钱概率最高的*********,这就是Exploitation。但是,当前获得的信息并不是*********吐钱的真实概率,可能还有更好的*********吐钱概率更高,因此还需要进一步探索,这就是Exploration。
最后,云音乐里很多模块的推荐算法其实都非常相似,但因为具体实施的算法团队不同,细节上肯定有所差异,效果也不会完全一样。对于EE问题的解决,以及如何提高用户粘性,想必算法团队也做了很多尝试,所以才有了这几年界面、体验的不断改善。
其实,有个问题不解决,推荐算法做的再好也没用——版权,网易云音乐的未来将何去何从,让我们保持关注吧。
本文由作者@图灵的猫 在PMCAFF社区发布,转载请注明作者及出处。
- 01-02教育
给老师的一封信作文高一1800字5篇
- 12-02教育
2022年护士实习工作心得
- 07-12生活
劳动号子的特点
- 08-11科技
word如何插入文件对象
- 01-19生活
NFC支付需要什么设备
- 02-28生活
好听的qq昵称
- 12-25教育
正能量名人名言
- 05-21生活
牛蒡根的功效与作用及食用方法
推荐
- 1生牛乳和调制乳的区别484
- 2蓝晓科技是做什么的公司306
- 3艾叶煮水洗澡要煮多久456
- 4幼儿园半年工作心得范文357
- 5鸡尾酒的品酒礼仪424
- 6苹果怎么设置自动更新App413